UkaTarsadia University			
Diploma Engineering MCQ Question bank			
Subject Code: 020030504	Date:		
Subject Name: Concrete Technology			

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Each question is of 1 mark.
- 4. Use of SIMPLE CALCULATOR is permissible. (Scientific/Higher Version not allowed)
- 5. English version is authentic.

	Unit 2- Admixtures			
1	1 What do you mean by admixtures?			
	Ingredients which are added to in		Ingredients which are added to make	
	cement before or after concrete mix		aggregates healthier	
	Ingredients added in cement to make		Ingredients added in concrete to	
	it shinler		make good workability	
2	Which of the following statements is incorre	ct ab	out the function of admixtures?	
	To accelerate the initial set of		To enhance the workability	
	concrete, to speed up the rate of			
	development of strength at early ages		To retard the initial act to keep	
	and concrete mixers		To relate the initial set, to keep	
			for placement	
			loi placement	
3	Which of the following statements is income		out the function of educivity reco	
5	which of the following statements is income	ci ac	out the function of admixtures?	
	To increase the strength of concrete		To increase the durability of concrete	
	by reducing the water content and by		to enhance its resistance to special	
	densification of concrete		conditions of exposure	
	To increase the capillary flow of water		I o control the alkali-aggregate	
	through concrete and to increase its		expansion or alkali silica reaction	
	impermeability to liquids			
1	Which of the following option doesn't come	in ch	omical admixturos?	
4	Plasticizers			
	Super plasticizer			
5	Classification of admivtures are classified in	to	turnee	
5	Classification of admixtures are classified in	ιΟ <u> </u>	types.	
	1		2	
	3		5	

6	Which of the following options doesn't come in mineral admixtures?				
		Set retarders		Blast Furnace Slag	
		Fly ash		Silica Fume	
		· · ·			
7	Admixtures which cause early setting, and hardening of concrete are called				
		Plasticizers		Retarders	
		Super plasticizer		Accelerators	
8	Mic	I-range water reducers result in at least _		%.	
		8		6	
		4		2	
9	Wh	at is the main function of set retarders?			
		Increase curing rate		Slows curing rate	
		Improves workability at low w/c ratio		Speeds up start of finishing	
				operations	
10	Su	per plasticizers reduce water requiremen	t by _	<u>%</u> .	
		12-30		10-15	
		30-42		48	
11	Da	mp proofing is done with a k	base	d mixture.	
		Sand		Tar	
		Rubber		Lead	
12	2 Damp proofing the process of water absorption.				
		Increase		Slows	
		Doesn't effect		Depends on the mixture	
13	Da	mp proofing cracks along with the founda	ation		
		True		False	
14	Ent	rapped air normally exists in the form of	relat	ively air voids.	
		Small		Absent	
		Large		Medium	
	•				
15	Da	mp proofing resist water we	ll en	ough.	
		Does		Does not	
		Doesn't effect		Depends on the temperature	
16	Wh	at are waterproofing admixtures?			
		Water repellent materials		Water fair material	
		Water absorption material		Water adsorption material	
17	Wa	terproofing admixtures are available in p	owd	er, paste or liquid and gaseous form.	
		True		False	
		1			

			1		
10	19 Which and is not a chamically active nero filling material?				
10	Silicate of soda	IIIIIIy			
			Zipo		
	Gliaik		ZIIIC		
10	Chemically active nore fillers	the s	atting of concrete		
19	Potorde		Decrease		
			No change		
	Accelerates		No change		
20	Chamically inactive pore fillers	tho	workability		
20					
	Declease		Increase		
	Don tallect		Improve		
21	Mater republing materials like and a notach		a sta maka tha concrete nonvigua		
21		i soap			
			Faise		
22	Enternance of air reserves all resistances in the former	fueled	ing har an		
22	Entrapped air normally exists in the form of	or relat	air voids.		
	Small		Absent		
	Large		Medium		
22					
23	Aluminiaria	e tillin	g material?		
			Fullers earth		
2.4					
24	What are plasticizers?		M/high and see such a feature de lite		
	Which adds water for workability		Which reduces water for workability		
	Which decreases workability at the		which oxidizes water for workability		
	Same water content				
25	Which and is opionic surfactants?				
23			Liverovulated corbonatio coide		
			Aydroxylated carboxylic acids		
	Lighosulphonates		Carbonydrates		
26	M/hat is the amount used of placticiners in		nt humainht0		
20	what is the amount used of plasticizers in	ceme			
			0.14%		
	1%		1-2%		
27					
27	What is the limitation of plasticizers?				
	A good plasticizer is one which does		A good plasticizer is one which does		
	not cause air-entrainment in concrete		not cause air-entrainment in concrete		
	> .12%	_	> 5%		
	A good plasticizer is one which does		A good plasticizer is one which does		
	not cause air-entrainment in concrete		not cause air-entrainment in concrete		
	> 10-20%		> 1-2%		
•					
28	At constant workability, what is the reduction	on in I	mixing water?		

		1-2%	50%			
		0.14%	5-15%			
29	Wh	ere do we use plasticizers?				
		Where low degree of workability is	Where medium degree of workability			
		required	is required			
		Where high degree of workability is	Where very low degree of workability			
		required	is required			
• •						
30	Wh	at is super plasticizers?				
		Which adds water for workability	Which reduces high range of water for workability			
		Which decreases workability at the	Which oxidizes water for workability			
		same water content				
31	Wh wor	at is the allowed reduction of water with sup kability?	per plasticizers without reducing			
		10%	20%			
		30%	40%			
32	ls it	possible to use w/c ratio as low as 5?				
		Yes	No			
			-			
33	Wh	at is the limitation of Carboxylic acids in Hig	h range water reducers?			
		0%	0.10%			
		0.20%	0.30%			
		· · · · · · · · · · · · · · · · · · ·				
34	Wh	at is an accelerator?				
		Which speed up the initial set of	Which delays the initial set of			
		concrete	concrete			
		Which speed up the final set of	Which delays the final set of concrete			
		concrete				
35	Wh	at is retender?				
		which speed up the initial set of	which delays the initial set of			
		CONCRETE Which append up the final set of	CONCRETE Which dolove the final set of concrete			
		which speed up the final set of	which delays the final set of concrete			
		concrete				
36	Na	OH is the example of retenders.				
		True	False			
	1		1			
37	Zin	c is the example of retenders.				
		True	False			
38	Ret	arders are used to				

		Offset the accelerating effect of cold		Offset the accelerating effect of hot	
		weather on the setting of concrete		weather on the setting of concrete	
		Offset the Retarding effect of cold		Offset the Retarding effect of hot	
		weather on the setting of concrete		weather on the setting of concrete	
		<u> </u>		<u> </u>	
39	At	normal temperatures, the addition of sug	jar _	per cent has little effect	
	on	the rate of hydration.			
		0.5-1		1-2	
		0.05-0.1		0.1-0.2	
40	Pic	k up the correct statement from the follow	wing.		
		Calcium fluosilicates act as a		CaCl ₂ acts as a retarders	
		retarders			
		Gypsum acts as a retarders		Gypsum acts as an accelerators	
41	Set	ting time of cement increaGypsumses by	y add	ding	
		Gypsum			
		NaOH		Hydrogen peroxide	
42	Dot	arders used at grouting oil wells, where t	tomr	$^{\circ}$	
72	Rei		lemp		
		100		150	
		200		250	
10	N 41			·	
43	IVIIn	ute spherical bubbles of size ranging fro	m	microns.	
		1-100		5-80	
		15-20		50-60	
44	What is Silica Fume?				
		Silica fume is a byproduct of		Silica fume is a mono product of	
		producing silicon metal or ferrosilicon alloys		producing silicon metal or ferrosilicon alloys	
		Most commonly found in nature as		Hydrocarbon combustion affords the	
		quartz and in various living organisms		two principal carbon oxides: carbon	
		q		monoxide and carbon dioxide	
45	Sili	ca fume is			
		Less reactive		Neutral	
		More reactive		Absent in concrete	
46	Coi	ncrete containing silica fume can have ve	erv	strength and can be verv	
_	_	<u> </u>			
		Low, Durable		High, Durable	
		Low, brittle		High, brittle	
47	Со	ntent of SiO ₂ in silica fume is			
		52 %		35 %	
		21.9 %		85-97%	
48	Со	ntent of CaO in silica fume?			

		5	21		
		40	<1		
49	¹⁹ The specific surface (m ² /kg) of silica fume.				
		370	15000-30000		
		45000	420		
		· · ·			
50	Sili	ca fume is usually added during			
		Before concrete production at a	After concrete production at a		
		concrete plant	concrete plant		
		Concrete production at a concrete plant	Curing		
		Unit 3- Fresh C	oncrete		
1	\//h	at do you mean by workability?	oncicic		
1	VVI	ASTM C 125 defines workability as	ASTM C 125 defines workability as		
		the property determining the effort	the property determining the effort		
		required to manipulate a freshly	required to manipulate a freshly		
		mixed quantity of concrete with a	mixed quantity of concrete with		
		maximum loss of homogeneity	minimum loss of heterogeneity		
		The strict definition of workability is	The workability is also defined as the		
		the amount of useful external work,	ease with which a freshly mixed		
		against the external friction between	concrete can be properly compacted		
		the individual particles in the	and also that it can be transported,		
		concrete, necessary to produce tuil	placed, and finished		
		compaction			
2	Wc	rkability of concrete can be improved by th	ne addition of		
2		Iron	Sodium		
		Zinc	Sulphur		
3	Wc	rkability of concrete can be improved by			
		More sand	More cement		
		More fine aggregates	Fineness of coarse aggregate		
4	Сс	ncrete placed in cold weather will take	time to gain strength.		
		No	Less		
		More	Equal to hot water		
5	Wc	rkability of concrete can be improved by _			
		Increasing size of aggregates	Decreasing size of aggregates		
		Increasing fine aggregates	Increasing flaky aggregates		
6	Wc	rkability of concrete is directly proportiona	l to		
		Grading of the aggregates	Time of transit		
		Aggregates cement ratio	Water cement ratio		
	_				
7	Wc	rkability of concrete is inversely proportion	nal to		
		Grading of the aggregates	Time of transit		

	Aggregates cement ratio	Water cement ratio
0	If composition factor of compute is 00.	
8	If compaction factor of concrete is .90, tr	nen workability is
	LOW	
	Medium	High
9	A compaction factor of 0.85 for a cemen	t concrete sample indicates
,	Low workability	Medium workability
	Good workability	Very good workability
10	Adding water increases	
	Workability	Strength
	Fame	Quality
11	Why Shape and texture of aggregates is	a must?
	Smooth surfaces give better	Smooth surfaces give poor
	workability	workability
	Rough surfaces give better	Rough surfaces give poor workability
	workability	
12	How many types of tests are there to fin	d workshility?
12		
	5	6
	5	0
13	These testsfind workability	
10	Directly	Indirectly
	0	Equals to the weight of the cement
14	Workability of concrete is measured by	
	Vicat apparatus test	Slump test
	Minimum void method	Talbot Richard test
15	Which test gives good results for rich mi	xes?
	Slump test	Compacting factor test
	Flow table test	VeBe test
1.0		
16	Which test is used for low workable cond	cretes?
	Siump test	Compacting factor test
	Flow table test	VeBe test
17	Which test Used for high workable conc	rotos?
1/	Slump test	Compacting factor test
	Flow table test	VeBe test
18	Which test is used for fiber reinforced co	oncrete?
10	Slump test	Compacting factor test
	Flow table test	VeBe test
		1 1
19	is practical in field tests.	
18	Flow table test Which test is used for fiber reinforced co Slump test Flow table test	VeBe test oncrete? Compacting factor test VeBe test
19		

		Slump test	Compacting factor test			
		Flow table test	Kelly Ball Test			
		· · · ·	· · · ·			
20	What is the compaction factor for medium degree of workability?					
		0.78	0.85			
		0.92	0.95			
21	Wh	at is the Vee-Bee time for medium degree	e of workability?			
		10-20 sec	05-10 sec			
		02-05 sec	35 sec			
22	The	e water–cement ratio is the ratio of				
		Weight of water to the weight of	Volume of water to the volume of			
		cement	cement			
		Density of water to the Density of	Weight of water to the weight of			
		cement	aggregates			
22		ower ratio loade to				
23	AI	Higher strength and durability	Higher strength but low durability			
		Lower strength but high durability	Lower strength and durability			
		Lower strength but high durability	Lower strength and durability			
24	W	orkability can be resolved				
27	~~~	With not using of plasticizers	With use of plasticizers			
		With the use of both plasticizers and	With not using of both plasticizers			
		super plasticizers	and super plasticizers			
25	Th	is image has				
		High w/c ratio	Low w/c ratio			
		High Strength	Low porosity			
26	Ho	w to improve the workability of concrete.				
		Increase the w/c ratio	Decrease the w/c ratio			
		Decrease the size of aggregates	Don't mix it for longer time			
27	Wh	at is the compaction factor for low degree	of workability?			
		0.78	0.85			
		0.95	0.92			
• •						
28	Wh	at is workability?				
		When it is easily placed and	When it is easily placed and			
		compacted neterogeneous	compacted homogenous			

		When it is not easily placed		When it is easily placed but not
				compacted homogenous
29	Wh	at is the moisture content in the slurry fo	r we	t processes?
		35-50%		12%
		40-45%		100%
30	The	e slurry, in its movement down the kiln, e	ncol	unters a progressively higher
	tem	perature. At first, the water is driven off	and .	is liberated.
		SiO ₂		CO ₂
		Gypsum		CaO
	1			
31	For	complete hydration of cement the w/c ra	atio r	needed is
		More than 0.25		More than 0.25 but less than 0.35
		More than 0.35 but less than 0.60		More than 0.60
	1			
32	The	e minimum water to cement ratio for cem	ento	concrete to hydrate is
		0.65		0.5
		0.38		0.27
	1			
33	App	proximate percentage range of A ₂ O ₃ in C	OPC	is
		17-25		3-8
		3-10		4-15
34	What is the percentage of iron oxide in white cement?			
		High		Very high
		Medium		Very low
	r			
35	W	nat is the percentage of air by volume in	Air E	Entraining Cement?
		3-4		10-11
		7-8		9
26	14/1			
36	vvn	at is curing?		
		Denydration		Hydration
		Drying		Dipping
27	1.0.0	dry any incompany, as a set of the set of th	ho li	
31	IN a	a dry environment, concrete strength will	be lo	bosed as much as% In the
	1110			40
		50		60
		50		00
38	Δft	er finishing concrete surface must be ker	ot	
50	7.110	Drv		First dry it and then wet it
		First wet it and then dry it		Wet
	1			
39	Dry	intervals in surface wetting leads to		
57		Cracking		Fogging
		High strength		Good workability
	1			See Hornasing

40	0 Contractors place blankets over the concrete to					
		Increase the rate of evaporation		Slow the rate of evaporation		
		To increase the strength		Ease to do work		
41	We	ell cured concrete thermal, pla	astic	& drying shrinkage cracks.		
		Doesn't affect		Maximize		
		Minimize		Create		
42	The sur	e property of fresh concrete, in which the face while placing and compacting, is cal	e wa lled	ter in the mix tends to rise to the		
		Segregation		Bleeding		
		Bulking		Creep		
43						
	Sel	ect the incorrect statement				
		Lean mixes bleed more as compared to		Bleeding can be minimized by adding		
		rich ones.		pozzuolana finer aggregate.		
		Bleeding can be increased by addition		none of the above		
		of calcium chloride.				
44	Wh	ich method is the most common and cheap	er fo	or water curing?		
		Ponding		Sprinkling		
		Mist curing		Wet covering		
45	Wo	orkability of concrete is directly proportion	onal	to		
		Aggregate cement ratio		Time of transit		
		Grading of the aggregate		All of above		
46	Workability of concrete is inversely proportional to					
		Time of transit		Water-cement ratio		
		The air in the mix		Size of aggregate		
47	The is tl	e hydration that provides the initial mix and he	che	mical bond of the concrete's ingredients		
	1	First step		Second step		
	t	Third step		Fourth step		
	1	F		·E		
48						
	The is c	e property of the ingredients to separate alled	fron	n each other while placing the concrete		

	Segregation		Compaction		
	Shrinkage		Bulking		
49	What is the full form of rH?				
	Rhesus factor		Relative humidity		
	Rush hour		Radio head		
50					
	Air entrainment in	the concrete increases			
	Workability		Strength		
	The effects of te	emperature variations	The unit weight		
		Unit 5- Concrete	e Mix Design		
1	Depending on the o	legree of workability and	d placing condition determine the		
	Slump value		The maximum size of aggregate		
	The amount of	mixing water	The minimum water-cement ratio		
		•			
2	Depending on the e	economical availability a	nd dimensions of the structure determine		
	Slump value		The maximum size of aggregate		
	The amount of	mixing water	The minimum water-cement ratio		
		0			
3	For the given slum	o and maximum size of o	coarse aggregate determine the		
	Slump value		The maximum size of aggregate		
	The amount of	mixing water	The minimum water-cement ratio		
4	Determine the	either from strengt	h considerations or from durability		
	considerations.				
	Slump value		The maximum size of aggregate		
	The amount of	mixing water	The minimum water-cement ratio		
5	Determine the amo	unt of cement per unit v	olume of concrete from		
	Slump value		The maximum size of aggregate		
	The amount o	f mixing water	The maximum size of aggregate and		
			the amount of mixing water		
6					
6	criteria.	it should the o	cement content required based on durability		
	Be more than		Be equal to		
	Be less than		Not be less than		
_					
7	The lower the w/c r	atio the st	trength of concrete.		
	Higher		Lower		
	Poor		Moderate		
L					
8	The aim of the desi	gner should always be t	to get concrete mixtures of optimum		

	strength at cement content and workability.			
	Maximum, Nonacceptable	Minimum, Nonacceptable		
	Maximum, acceptable	Minimum, acceptable		
9	Maximum size of aggregates should not be	e larger than		
	1/5 the minimum dimension of	1/4 the minimum dimension of		
	structural members	structural members		
	1/3 the minimum dimension of	1/6 the minimum dimension of		
	structural members	structural members		
10	Maximum aiza of aggregates abould not be	larger than		
10	1/3 the thickness of a slab	1/2 the thickness of a slab		
	1/1 the thickness of a slab	1/2 the thickness of a slab		
11	According to IRC:15-2011 Characteristic	levural Strength at 28 days is		
11				
	4 N/mm^2	4.5 N/mm^2		
	5 N/mm^2	3.5 N/mm^2		
	310/11/1	3.3 N/IIIII		
12	According to IRC:15-2011 % Fly a	ash is required to be replaced with the total		
	cementitious materials.			
	15	20		
	25	30		
13	According to IRC:15-2002% Fly	ash is required to be replaced with the total		
	cementitious materials.			
	15	20		
	25	30		
14	According to IRC:15-2002, Maximum nom	nal size of aggregates is		
	20 mm crushed aggregates	31.5 mm crushed aggregates		
	25 mm crushed aggregates	30.5 mm crushed aggregates		
15	According to IDC:15 2011 Maximum name	nol size of aggregates is		
13	According to IRC. 15-2011, Maximum norm	21.5 mm crushed aggregates		
	25 mm crushed aggregates	30.5 mm crushed aggregates		
		30.5 min crushed aggregates		
16	According to IPC:15,2011 Minimum come	nt content for $4.5 \mathrm{N/mm}^2$ characteristic		
10	flexural strength for OPC shall			
	Shall not be less than 360 kg/m ³	Shall not be less than 425 kg/m^3		
	Shall not be less than 300 kg/m ³	Shall not be less than 500 kg/m^3		
	Shall hot be less than 340 kg/m	Shall hot be less than 500 kg/m		
17	According to IDC:15 2011 Minimum come	nt contant for 4.5 N/mm ² characteristic		
17	According to IRC. 15-2011, Winnmum cement content for 4.5 N/mm Characteristic			
	Shall not be loss than 260 km/m ³	Shall not be loss than 425 km/m^3		
	Shall not be less than 340 kg/m [°]	Shall not be less than 500 kg/m ⁻		
10		2		
18	According to IRC:15-2011, Minimum cement content for 4.5 N/mm ² characteristic			

	flexural strength for OPC + fly ash mix OPC shall			
		Shall not be less than 360 kg/m ³		Shall not be less than 425 kg/m ³
		Shall not be less than 340 kg/m ³		Shall not be less than 500 kg/m ³
19	Aco	cording to IRC:15-2011, maximum free W	//C r	atio for OPC is
		0.45		0.4
		0.5		0.55
20	A	andia a ta IDO:45 0044, manimum fra a M		atia fan DDO ia
20	ACC	Cording to IRC:15-2011, maximum free w	//C r	
		0.43		0.4
		0.5		0.55
21	10	ande fan Onenifiaetien fan endinem Deutlen		mont 22 mode2
21	15 (code for Specification for ordinary Portian	d Ce	ement, 33 grade?
		15 209:1989		IS 383.197
		13 435.1969		13 430.2000
22	IS (code for Specification for coarse and fine	ann	regates from natural sources for
22	cor	crete?	ayy	
		IS 269:1989		IS 383:197
		IS 455:1989		IS 456:2000
		·		
23	IS o	code for Specification for Portland slag ce	emer	nt?
		IS 269:1989		IS 383:197
		IS 455:1989		IS 456:2000
	I			
24	IS (Code of practice for plain and reinforced	conc	rete is
		IS 269:1989		IS 383:197
		IS 455:1989		IS 456:2000
25	10	AEZ: 10EZ in for		
23	13	Code of practice for general		Specification for Portland pozzolana
		construction of plain and reinforced		cement fly ash based
		concrete for dams and other massive		
		structures		
		Specification for Portland pozzolana		Methods of test for pozzolanic
		cement calcined clay based		materials
26	IS '	1489(Part 1):1991 is for		
		Code of practice for general		Specification for Portland pozzolana
		construction of plain and reinforced		cement Part I Fly ash based
		structures		
		Specification for Portland-pozzolana		Methods of test for pozzolanic
		cement: Part 2 Calcined clay based		materials
		· · · · · · · · · · · · · · · · · · ·		
27	IS ^r	1489(Part 2):1991 is for		
		Code of practice for general		Specification for Portland pozzolana
		construction of plain and reinforced		cement fly ash based
		concrete for dams and other massive		

		structures		
		Specification for Portland pozzolana		Methods of test for pozzolanic
		cement calcined clay based		materials
28	IS	1727:1967 is for		
		Code of practice for general		Specification for Portland pozzolana
		construction of plain and reinforced		coment fly ash based
		construction of plain and ther measive		Cement ny asir based
		structures		
		Specification for Portland pozzolana		Methods of test for pozzolanic
		cement calcined clay based		materials
29	IS 6	650:1991 is for		
		Specification for standard sand for		Methods of sampling and analysis of
		testing of coment		concrete
		Creating of Cernetic		
		Specification for pozzolana cement		Methods of test for pozzolanic
				materials
30	IS 1	199:1959 is for		
		Specification for standard sand for		Methods of sampling and analysis of
		testing of cement		concrete
		Specification for pozzolana coment		Methods of test for pozzolanic
		opecification for pozzolaria cement		materiale
				Indicidais
21	4 7	-1		
31	1. 1	ne compressive strength rec	quire	d
		Nominal		Minimum
		Maximum		No
32	The	adequate workability necessary for		compaction with the compacting
52	-01	inment available		
	equ			Quarter
		Full		Double
33		water-cement ratio content to gi	ve a	dequate durability for the particular site
	con	ditions.		
		Minimum		Maximum
		0.5		Nominal
		0.5		Ivolillia
24				
34			ige c	cracking due to temperature cycle in
	ma	ss concrete.	-	
		Minimum		Maximum
		0.5		Nominal
35	35 has designated the concrete mixes into a number of grades as M10_M15			
55				IS 456 2010
		15 513-1999		15 465-2000
36	36 What is the approx, mix proportion for M10?			
		1.3.6		1.5.4
		1:1 5:3		1.1.2
	1	1.1.0.0		1.1.4

37	37 What is the approx. mix proportion for M15?				
		1:3:6	1:2:4		
		1:1.5:3	1:1:2		
38	Wh	at is the approx. mix proportion for M20?			
		1:3:6	1:2:4		
		1:1.5:3	1:1:2		
39	Wh	at is the approx. mix proportion for M25?			
		1:3:6	1:2:4		
		1:1.5:3	1:1:2		
40	Ма	ximum nominal size of aggregates to be use	ed in concrete may be as large as		
	pos	sible within the limits prescribed by			
		IS 456-2000	IS 456-2010		
		IS 513-1999	IS 465-2000		
	1				
41	The	grade of concrete M 150 means that compres	sive strength of a 15 cm cube after 28		
	day	S, IS	8		
		100 kg/ cm^2	150 kg/ cm^2		
		200 kg/ cm^2	250 kg/ cm^2		
42	Ma	ximum quantity of water needed per 50 kg of	cement for M15 grade concrete is		
		28 Litres	30 Litres		
		32 Litres	34 Litres		
43	Wh	ich of the following is requirement of a good	concrete mix design?		
		Strength	Durability		
		Economy	All of the above		
44	Wh	at stands M in M30 concrete			
		Maior	Minor		
		Mix	None of the above		
45	Fek stands for				
	1 01	Ductility of har	Characteristic strength		
		Workability	None of the above		
		Workdonity	None of the above		
46	Gra	de of concrete should be greater than			
70	On	Standard deviation	Ultimate strength		
		Target mean strength	None of the above		
	I				
17		method is based on American mix design of	concrete		
+/		I S method	ACI method		
		I.S method	All of the above		
	l	INC-44 IIICIIIOU			
40					
48	Which of the following is not factor affecting water content?				

		Size of aggregate		Workability	
		Type of cement		Type of structure	
49	Slump of the concrete is an essential property for concrete mix design				
		True		False	
50	IS method of mix design describes amendments as IS-10292-2009				
		True		False	

Best of Luck